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ABSTRACT

This report discusses analytic and experimental procedires applicable

to improving the performance of a particular type of speech compression system
presently being developed at AFCRL under the direction of C. P. Smith.

The system operates on the principle that the number of linguistically

distinguishable varieties of instantaneous spectrum patterns in speech is much

smaller than the total number used during any utterance. Considerable com-

pression can be achieved by replacing original speech patterns by reference

patterns selected from a relatively small library, and transmitting correspond-

ingly short index numbers or descriptors identifying the reference patterns so

used.

The main problem dealt with in the present study concerns the choice
of patterns to be used in the reference library. The minimum number of refer-

ences needed and their exact specification depend on characteristics of human

speech that can be determined only by experiment. Material contained in the

report relevant to the problem of choosing references includes the following:

a) Formulation of experimental objectives in terms of possible dis-

tributions of raw speech patterns and their dependence on the Input state, i. e,

on speaker, duration of utterance and text material.

b) A technique for library comparison based on minimum absolute

distance. This is applied in designing experiments to evaluate the analyzer

sampling error and adjust the synthesizer channel gains, It also furnishes an

indexto which analysis of variance techniques may be applied in order to deter-

mine the variability of reference subsets with speaker, duration of utterance,

and type of text material.
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c) An approximate model for studying the rate of reference generation.

This model is based on classical occupancy theory, and with the addition of a

time varying parameter may lead to a better understanding of the process of

reference generation. Experimental results and their interpretation from this

point of view are given.

d) A spherical clustering technique which may be used to reduce a given

library to one of smaller size in such a way that each pattern in the original

library is within a prescribed absolute distance of some pattern in the reduced

library. This technique is applicable to the problem of finding the maximum

average radius of exchange subsets, i. e. , subsets within which raw speech

patterns may be exchanged freely without serious degradation of speech quality.

Examples of its use on actual data are given.

e) Experimental designs for determining whether significant differences

in reference libraries may be attributed to different speakers, differences in

duration of utterance or differences in text material.

Brief attention is also given to the speech segmentation problem and to

encoding- techniques. The report concludes with a summary of the program of

experimentation recommended for continued investigatibn.
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I. INTRODUCTION

The work described herein is directed toward the acquisition of funda-

mental knowledge about speech necessary to assess the ultimate capabilities of

a particular speech compression technique presently being developed at AFCRI

under the drection of C. P. Smith. The emphasis is on analytic and experi-

mental techniques that can be used with the AFCRL Voice Data Processing Systei

(VDPS), which was designed specifically as a fleible research tool and yst rnn

simulator for studies of this technique. (1) (4) (5) (6)

Figure 1. 1 shows the operations performed by the analyzer ard syr.-

thesizer of the type of system under investigation. (1) A digital represer.ttlc-.

of the voice signal input is obtained at the analyzer, consisting of a voiced-

unvoiced indication (1 bit), pitch frequency (3 bits), voice amplitude (6 bit.),

and spectrum pattern (54 bits). The latter is obtained by quantizing the oat.t.t;and~~~ 

(S.Te 

isbaie

of an 18-channel filter bank (Vocoder) with three-bit resolution per channei.

(One or two bit resolution may be used alternatively.) These measurement. ;r,

repeated every 20 ms, so that information about the incoming speech is ger.erat:,,i

ata rateof5Ox(54+6+ 3 +)= 3200 bits per second.

Rather than transmitting the spectrum patterns as measured at the

vocoder output, the analyzer instead compares each measured patter, with

each of a number of reference patterns previously determined and main i ,ei

in storage. The number of stored reference patterns is much smaller th n th.

number of varieties of input pattern possibilities. Therefore by selecting th '

reference pattern which most nearly matches the incoming "raw speech" patterl,

the analyzer restricts the number of different pattern "messages" that nco-C, Lc-

transmitted. Of course, the pattern configurations themselves (54 bits) are. ot

transmitted; instea, a set of code words is used which represents the Sec! ot

reference patterns with as few bits per word as possible.
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Thus, by minimizing the number of references used and the lengths

of the code words which represent them, a considerable reduction in the data

rate of the system is expected. If, for example, 1000 references were found

sufficient, not more than 10 bits per pattern on the average would be necessary

to represent them without ambiguity. At the sampling rate of 50 per second, the

analyzer would then transmit at a rate of only 50 x (10 + 6 + 3+.1) = 1000 bits

per second, thus permitting a considerable reduction of bandwidth. The syn-

thesizer receives the incoming digital signal corrupted by noise and dec odes it,

correcting errors caused by the noise (to an extent determined by the nature of

the code used for representing signals at the analyzer output), and separating.

the parts of the digital sequence corresponding to the spectrum pattern and the

voicing, amplitude and pitch parameters respectively. The latter are used to

control the excitation of a bank of synthesizer filter-amplifiers, whose relative

gains are set in accordnce with the received spectrum pattern information. (5)

For a system of this type it is clear that the crucial design factor is

the choice of the spectrum patterns that are to be stored and used for references

at the analyzer. To obtain a high degree of speech compression we want to use

the smallest possible number of references. On the other hand, the number

must be sufficiently large, and their locations in 18-dimensional space must

be so chosen, that any raw speech pattern input is close enough to some one

of the references that the two can be exchanged without serious degradation of

speech quality. *

*The possibility of such exchanges may be expected to depend strongly on
context, the more so as the distance between the two patterns exchanged
increases. On the other hand, we may hope that for sudficiently close pat-
terms this dependence may be ignored without serious effect. The degree
of compression obtainable, however, depends on how large this common
thredhold turns out to be.
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Moreover, we should like to operate with a fixed set of references

that is independent of the identity of the speaker, the text he speaks or the

duration of his utterance. The feasibility of this can only be assessed when

we know:

a) how many different patterns are used by a typical speaker,

b) how close a pattern must be to a reference before an exchange

can be tolerated,

c) what types of variability occur from speaker to speaker, text to

text, and time to time.

Most of the present report is devoted to various aspects of the problem

of choosing references. A sample space model to help visualize the variety of

system possibilities is discussed in Section 2. Experimental and analytical

techniques for studying how the number of references needed by a speaker

varies with length of utterance, and for systematically redicing a preliminary

library of stored references, are discussed in Sections 4 and 5 respectively.

Section 6 considers techniques for studying the variability of the reference

libraries used by different speakers at different times with different text

materials.

Another important problem concerns the encoding of the reference

patterns selected for transmission. It is well known that if advantage can be

taken of the statistical dependence among successively occurring reference

patterns, a considerable reduction of the average code word length, and hence

of the data rate, -an be achieved. Section 7. 1 discusses this problem.

In Section 7. 2 we describe a technique for segmenting speech into

intervals, throughout each of which a single reference pattern may be used

repetitively without excessive degradation of the quality of the result. The

preliminary results given suggest that this technique may be developed to

yield considerable compression with rather simple implementation.

-4-
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Some consideration is given to the determination of equipment errors

and the optimization of synthesizer channel gains in Section 3. Problems of

voiced-unvoiced switching and the control of the pitch source are not considered

here, however; the emphasis throughout is on optimizing the processing of the

vocoder spectrum pattern parameters.

-5.-



i" 2. LINGUISTIC EXCHANGE SUBSETS

Z. 1 Subset Configurations

Before experiments can be systematically planned, we must be clear

on just what revelations are expected from the experimental data, and what

relation they have to the overall needs of the program. For this purpose it

is necessary to have a specific model in mind which can be used to represent

the speech phenomena we have to deal with and characterize the operations

performed by the experimental equipment.

Consider the sample space containing all possible vector represen-
116

tations of the 18-channel quantized vocoder output. There are some 10 vectors

in this space, most of which of course are never used by an speaker in any con-

text. Let us consider the sequence of patterns actually used by a given speaker

over any short interval. Suppose a new sequence of patterns were artificially

generated, in which some patterns differed from their original counterparts.

It is reasonable to suppose that the quality of the resulting artificial speech

would depend on:

(i) How many patterns were changed relative to the total number

spoken,

(ii) How much each pattern was changed,

(iii) Which patterns were changed,

(iv) What text was being spoken,

(v) Who was speaking and the time at which he spoke.

Let us refer to the combination of text, speaker and time of speaking

as the input state. There is good evidence that for a given input state some

patterns at least can be changed without an intolerable sacrifice of quality,

but that if too many are changed by too much, serious degradation results.

-6.
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This encourages us to take the view that the vectors corresponding to

raw speech may be grouped into more or less well defined subsets in sample

space, with the property that each vector in a raw speech sequence may be

exchanged for any other vector lying in the same subset without intolerable

degradation of the synthesized speech. We call these subsets linguistic

exchange subsets.

This view ignores the possible effect of the context within which a

given exchange occurs; i.e., the quality change broght' about by exchanges

within or between the subsets of a given configuration might depend not merely

on the number of each type that occurs, but also on the order in which they

occur. A more elaborate model could take this into account by considering

subsets of allowable sequences of exchanges rather than subsets of allowable

* exchanges. We sIall, however, adopt the simpler model to begin with, in the

-. hope that the additional complexity will be found unnecessary.

It is hardly necessary to mention that use of the term "speech quality

threshold" does not imply that this quantity is eatyto define or measure, or

indeed that it is a quantity at all. In practice its determination would involve

the pooled value judgments of several skilled listeners.

We might add that it is possible, although not necessary, to postulate

that each of the exchange subsets we have described has a linguistic correlate,

.- something like a subphoneme, the concept being that there exists an alphabet

of these subphonemes (perhaps 1000 or more in number) out of which phonemes

and spoken words are constructed, just as written words are spelled out with

letters. These subphonemes are abstract entities whose concrete realizations

.* are the spectrum patterns obtained in 20 ms of vocoder output. .- Every vector

pattern in an exchange subset has the same linguistic correlate, and these

* linguistic orrelates or subphonemes are the building blocks of speech in the

*sense that they cannot be confused too much in analyzing the synthesizing speech

without intolerable degradation of speech quality.

-7-



So far we have done little more than conjecture that a configuration of

linguistic exchange subsets exists for any input state. How many subsets there

are, to what extent they are localized in non-overlapping closed region@ of sample

space and how they shift as the input state changes are all questions that are clearly

relevant to the design and feasibility of the speech compression system under study.

They are furthermore questions that can be answered only by experimental study,

and thus are safficient to establish objectives for part of the experimental program.

Let us now turn to the sample space characterization of the operations

performed by the analyzer-synthesizer, in an attempt to see what possibilities

should be explored for optimalLy matching the machine to raw speech.

Regardless of how the reference library is selected, and whether it is

held fixed or varied in an adaptive manner, the type of operation nerformed by

the system on a particular input given a particular library is specified; The

absolute distance between the input and each library reference (sum of channel

differences without regard to sign) is calculated and the nearest reference is

selectedfor transmission. Let us imagine that a certain number N of the points

in sample space constitute the reference library during an interval when incoming

raw speech patterns are to be classified. Let us divide the sample space into N

distinct reference subsets, each containing the points closer to one of the reference

points than to any of the other, distances being measured with the absolute yard-

stick mentioned above. These reference subsets are not hyperspheres but odd-

shaped regions who.;e boundaries contain points equidistant from two or more

references. The classification rule used by the machine in effect synthesizes

speech by replacing each spectrum pattern. of the original raw speech by the

reference pattern corresponding to the subset into which the raw speech pattern

falls. Thus, these reference subsets are also exchange subsets in the sense that

the machine exchanges any pattern falling into one of the subsets for the subset

reference pattern.

-8-



We may look upon the machine then as superimposing its configuration

of reference subsets upon the configuration of linguistic subsets determined by

the input state. If the reference subset configuration could be designed so that

each reference subset covered one and only one linguistic subset at-all times,

we should expect optimum system operation. But this would be possible only

if the linguistic mbsets were separable by boundaries of the type set up by the

machine, which is by no means known to be the case. Suppose, for e~ample-

that linguistic similarity depends on vectors being close in the sense that each

coordinate (channel amplitude) should agree within one quantization level of

the corresponding coordinate of some refer ence vector vo , and that not more

than 5 coordinates or channels can show even this much variation. If the

machine attempted to cover this linguistic subset by placing a single reference

at vo, the nearest boundary would have to be at an absolute distance of 5 to

include all of the points in the subset. But about half of the points within an

absolute distance of 5 from v would not belong to the linguistic subset because

they differ from v by more than one amplitude level in one or two channels.0

In other words when the reference subset is made large enough to include all

points in the linguistic subset, many other points must be included as well,

and these points of course might belong to other linguistic subsets. Since

these emceptional points are well scattered throughout the reference subset,

it is not clear how they can be separated easily from the others.

Just how serious this situation is remains to be determined. In any

event, we can expect this type of machine to work well with a reasonable number

of library references only if absolute distance is a good measure of linguistic

similarity out to distances of say 4 or 5. Another objective of the experimental

program, accordingly, is to find out whether this is the case.

-9-



The nature of the linguistic subset configuration determines the type

of operation the system should perform for best results, and the quality of

result that can be achieved. As mentioned above, the general model we have

in mind is one in which the linguistic subsets are fairly distinct for a given

input state (speaker, teA, time of speaking), but shift around as the input

state changes in such a way that the subsets always remain distinct although

shapes and spacings may change.

For convenience we shall refer to parameters that characterize the

linguistic configuration corresponding to a fixed input state as instantaneous

parameters. Parameters that characterize the changes occurring as the input

state changes may similarly be termed dynamic parameters.

The instantaneous subset configuration may be characterized gr-:sly

in terms of the average subset radius RL' This is the absolute radial distance

from some central point within which most of thepointsof the subset may be

found, on the average. As discussed above many other points which do not

belong to a particular linguistic subset may lie within RL of its central point,

and some of these may belong to other linguistic subsets. Thus, although

two adjacent linguistic subsets may be disjoint, in the sense that they contain

no points that belong linguistically to both, nevertheless their centers may be

separated absolutely by less than 2 RL . In this case we shall say that the two

subsets although linguistically disjoint overlap absolutely.

Of course the instantaneous linguistic subset configuration may contain

subsets with widely varying radii, in which case something more about the dis-

tribution of values of R L than its average value will be needed, even for gross

characterization. A rough picture of the instantaneous configuration can be ob-

tained, however, by determining the average RLI the average separation of

subsets SL in terms of RL and the approximate number of subsets.

.10.



As far as dynamic parameters are concerned, the most important

gross characteristics are the average magnitudes of the changes in subset

radius and location which occur as speaker, text and time of speaking are

changed. These also may conveniently be expressed in terms of R

A quantity of considerable significance for system design is the

J time interval over which a given input state may be assumed to persist.

It is quite possible that as a speaker proceeds through a long passage of

I homogeneous material, his linguistic subset configuration progressively

changes so that subsets from later configurations may fall between subsets

from earlier ones. Thus, if the input state is assumed to persist over too

long an interval, a badly blurred configuration could result rather than the

relatively distinct one we have associated with a given input state and have

the right to expect on the basis of intelligibility. That is, the duration of a

I given input state is actually the time interval over which the configuration

corresponding to a given speaker and given type of text remains fairly well

J separated. Since the configuration probably changes slowly with time, and

varies somewhat with speaker and text; it may not be possible to specify

I this time interval precisely. On the other hand, even a rough average

would be helpful in assessing the feasibility of an adaptive system which

attempts to follow the changing configuration with a changing reference

library.

Another conceivable difficulty here is that the duration of a given

state is so short that not enough samples can be obtained to define the in-

stantaneous configuration completely before it changes. In this event,

experiments with short passages of text carefully selected for rapid defi-

nition of particular parts of the configuration may be necessary.

It
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2.2 System Implications

Before proceeding to the discussion of experimental techniques for

determining the parameters mentioned above, let us consider for a moment

the system possibilities as they appear in view of the various situations that

may exist in sample space.

The simplest situation is shown schematically in Figure 2. Ia. Here

the linguistic subsets are well separated for a given input state (STL >> 2RTL)

and displacements are assumed small (DL<<RL) as the input state changes.

In this case a set of fixed references, one in each linguistic subset, will

serve to classify input vectors correctly.

Figure 2. lb shows another situation in which the linguistic subsets,

although stable, are closer together and irregularly shaped, so that for some

subsets two references are needed for machine separation.

When the linguistic subsets shift by an amount comparable to RL as

the input state changes, two further cases arise. In Figure 2. 2a the shifts

are larger than the mean subset radius (DL > RL) but smaller than half the

mean distance between subsets (DL < SL/2), so that the possible positions

of a given subset define a region which does not overlap the corresponding

locus of positions of any other subset. Here the regions containing the loci

can be separated by a machine using one reference per locus, but this may

not be sufficient for good performance because a subset can shift so that it

no longer contains its reference (as for reference r i and subset Lii in

Figure 2. Za. In this case, although all vectors within a subset will always

be replaced by a single reference vector, that reference vector may be too

far from any of the subset vectors to bear a sufficiently close linguistic

resemblance to them. (Of course, the shapes of the subsets may change

more than is suggested in Figure 2. 2a as the input condition changes.)

.12.
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The following system possibilities exist for the situation of Figure 2. 2a:

(a) The "linguistic tolerances" may be sufficiently wide that one fixed

reference per subset locus will serve as shown.

(b) If the linguistic tolerance is close, so that exchanges may be made

only within subsets for any given condition, an adaptive system which derives

its references from the subset pattern in use at the time would handle the

situation.

(c) For a close linguistic tolerance a fixed grid of references, suffi-

ciently dense that the tolerance requirement is met no matter what the subset

displacements are, might be used.

In Figure Z. 2b the subsets are close together (S L %' RL) and the dis-

placements are large (DL RL) so that subsets for one input condition over-

lap those corresponding to another input condition. Here two system possi-

bilities are the dense fixed grid and the adaptive reference system mentioned

above. A fixed reference system with one reference per subset would not

work here, since if proper separation is achieved for one configuration, split

subsets are bound to result when the same references are used for another

input condition, as shown in the Figure.

.15-



2. 3 Comparison of Reference Libraries

The AFCRL Voice Data Processing System is presently arranged to

generate a library of references from raw speech input as follows:

1) A threshold T > 0 is set.

2) The individual channel quantized amplitude differences between

the incoming pattern and each of the stored reference patterns are measured

and totaled without regard for sign.

3) The incoming pattern is replaced by the nearest reference provided

a) No channel difference exceeds 1, and

b) The number of channels with a difference of I does not exceed T.

4) If both the above conditions are not met, the incoming pattern be-

comes a new stored reference.

5) In case of ties, the incoming pattern is replaced by the most fre-

quently occurring of the tied references.

This generation scheme will produce a different set of library refer-

ences each time a new input is applied. In order to make use of this feature

for the studies we have in mind, it is convenient to introduce a measure of

the distance between, or similarity of, two libraries generated from two in-

puts. Let the two sets of stored references be { xi) and {yid, with i = 1, 2,..

N where N is chosen large enough to include all of the most frequently used re-

ferences in both sets. Here we order the {xi) according to their frequency

of occurrence, with x1 the most frequent. The {yi) are then ordered with

respect to the { xi) by starting with x1 , choosing as yI the y that is closest

-16-



to 3 , choosing as YZ the y closest to x 2 , etc., e. , so that

Y m j j' 1, 2,..., N (in order). (2.1)

where the bars denote absolute value. We are interested in the statistics of

the quantity

d(x i, yi) d= xi y" i (2.2)

which measures the absolute distance between corresponding members of the

two libraries. The average value of d i may be taken as a simple measure of

the similarity of the two libraries

N

d(X, Y) = N di , (2.3)

i=l

while its variance

N
2 1 ;
2 d (d di  (2.4)

i= I

measures the uniformity of the fit.

This measure is actually based on a compromise between what one

would like ideally and what can be computed easily. Ideally, to find the

closest fit of the y-library to the x-library all (x, y) pairs should be searched

for the closest pair, the next closest pair, etc., until all pairwise associ-

ations have been found. The above procedure does not do this; e. g., the

Yi found in (2. 1) might be closer to another x than to x i . The pairwise asso-

ciations produced by (2. 1) depend on the order in which the xi are taken, so

that to avoid ambiguity a definite ordering of the xi must be specified

.17
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When the two libraries are close in the sense that the average distance

separating closest pairs is smaller than the average distance between members

of the same library, the ideal and approximate ordering methods may be expected

to give closely similar results. As an illustration we may use the data of Figure

2.3 with the ten even-numbered references taken as the x library and the ten odd-

numbered ones as the y library. Both of these (artificial) libraries are already

ordered according to frequency of occurrence. Figure 2.4 shows the absolute

distances between all pairs. The following table shows the pairings produced by

the two methods.

Pairs Given No. of Closest No. of
by (2. 1) d Occurrences Pairs d Occurrences

2-5 6 543 2-5 6 543

4-7 6 380 4-7 6 380

6-3 6 483 6-3 6 483

8-9 5 329 8-9 5 329

10-15 5 259 10-45 4 259

12-11 6 278 12-11 6 278

14-13 8 241 14-13 8 241

16-17 6 170 16-17 6 170

18-19 20 155 18-21 22 153

20-21 12 146 20-19 10 148

d7.9 dw =6.9 d=7.9 dW= 6 .9

The average distance between members of the same library in this

illustration is 12. 3, which is considerably larger than the average separation

of the pairs, in this case 7.9. As expected, therefore, the pairings are nearly

identical; the only differences occur in the group 18 through 21.
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A refinement of the measure of similarity introduced above may be

obtained by using a weighted average in place of (z..3), with the weights depen-

dent on the frequencies of occurrence of the pairwise associated patterns in

the two libraries. Thus

N

= 1
iml

N 
(2. 5)

W ~E

When the W.Is are taken as the numbers of occurrences shown in the table
I

above, the weighted diistance between libraries becomes 6.9.

Finally, we note that both d and d satisfy the triangle inequality,

for let

ai = Xi " Yiandb i = yi " zi" (2.6)

Then

d(xi , i < d(x t , y t ) + d(yi , 1i ) (2.7)

d(X, Z) < d(X, Y) + d(Y, Z)

become respectively

lai+bil < Jail + 1bil

(2.8)

7 jai+b 1i'<j Jail + I fbi!.

which are obviously true. Thus, for example, if two libraries are equidistant

from a third, they themselves may be separated by not more than twice that

distance, etc.
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Flow Chart z. 1 shows how the distance between libraries may be

programmed for machine computation. The program compares a rank

ordered library X with another library Y which is rank ordered with respect

to X by associating with each x i taken in order the closest y. Once a vector

Yi has been associated with an x it is deleted from the Y library. While

making the comparisons the program computes the distances between the

paired vectors, and after all comparisons prints out the average minimum

distance. The paired vectors themselves are also available for printout.

On the Flow Chart y'(n) contains the y-vector being paired at the

moment, and DIS(n) the minimum distance from the vector y'(n) to its

counterpart x(n) in the X library.

Computer running time on a large scale digital computer (IBM

7090) should be in the vicinity of 2 minutes for 1000 vectors.
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3. DETERMINATION OF EQUIPMENT ERRORS

3. 1 Description of the Voice Data Processing Equipment

The AFCRL Speech Analyzer consists of an 18-channel vocoder and a

multiplex ( 4 ) which quantize@ the amplitudes of each of the 18 bands of frequencies

into 3 bits. This results in a 54 bit description of the instantaneous speech

spectrum. In addition, the voice amplitude is quantized into 3 bits and the

pitch frequency into 6 bits. An additional bit is reservedfor indicating whether

the sound is voiced or unvoiced. A 64 bit computer word thus describes the

speech sound at an instant of time and 50 such samples are taken each second.

Amplitude normalization is achieved by quantizing ratios with respect to the

sum of the individual channel amplitudes, or area under the pattern. (5)

The voice data processor can compile a reference library of 54 bit

spectrum patterns which it stores on a drum for future comparisons with the

Sequence of instantaneous spectra comprising speech. The method of com-

parison consists of computing the sum of the magnitudes of the channel am-

plitude differences between the input speech and the stored pattern, and

matching the input speech pattern to the closest stored pattern.

The analyzer has basically two modes of operafion. In the first mode

it constructs a reference library of patterns from speech inputs, while in the

second mode it transmits the memory address of the spectrum pattern which

best matches the present input pattern. The match criterion is the compu-

tation described above.

In constructing the reference library of patterns, the machine compares

the input spectrum with each of the stored patterns to establish the minimum

error between the input and the best thatching stored pattern. (6) In the process

of generating new references, the following criterion (if not met) results in

the inclusion of the present spectrum in the reference library.
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(a) In any of the 18 vocoder channels there must be at most one quantum

level dfference between the input spectrum and the stored reference with which

it is compared.

(b) The sum of the magnitude of differences between input spectrum

channel amplitude and stored reference channel amplitude must be less than a

threshold TM.

The threshold T can assume values from 0 to 7. By setting T~equal to

0 the raw speech input can be accumulated and stored on the drum as if it weie

a sequence of references. Available outputs from the analyzer consists of:

*(a) 21 channels of raw speech quantized as follows: 3 bits for each of

the 18 vocoder channels, 1 bit for the voiced-unvoiced decision, 6 bits for pitch

frequency, and 3 bits for voice amplitude.

(b) Speech in terms of the reference pattern stored on the drum.

(c) Speech in terms of the sequence of "closest" stored spectrum

pattern numbers.

(d) Sequence of error numbers (the numerical value of the summed

magnitude of channel differences).

(e) The number of occurrences of each of the stored references in

the input speech segment.

(f) Rank ordering of the stored references.

Addtional capabilities of the AFCRL facility include the capability of

stretching speech to as much as 12 times its original duration by reading out

(to the synthesizer) the sequence of stored patterns while repeating each pattern

up to 12 times.

The readout from the drum can be connected to a vocoder synthesizer

which will accept a 64 bit computer word, 54 bits of which represent the instan-

taneous spectrum as read from the drum. The synthesizer converts 64 bits to
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20 analog signals and the binary voiced-unvoiced indication. The subset of 18

analog signals representing the spectrum channel amplitudes controls the gains

of arnplifiers which regulate the amount of energy transmitted at each instant

as a function of frequency. The source of excitation of the set of filters used

in the synthesis of speech is alternately the pitch frequency or the hiss gen-

erator. Switching between the two modes of excitation is governed by the

voiced-unvoiced switch.

Thus, the AFCRL speech analysis equipment is a versatile research

tool which not only permits a specific speech compression system to be tested

and refined, but also facilitates basic research in many peripheral areas of

speech ana.qsis and perception.
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3.2 Characterisation of Sampling Errors

If the same input is repeatedly applied to the Voice Data Processing

System (by means of a tape recording, for example) when operating with zero

threshold, a new sequence of speech patterns may be produced at each trial.

This results from the fact that the sampling at the vocoder channel outputs is

controlled by a free-running clock, so that the sampling epoch, or point on

the speech waveform at which the first sample is taken, may vary over one

sampling interval. The sampling interval presently is 20 ms. The envelope

detectors at the vocoder channel outputs have time constants of the order of

40 ms, so that a 3 db change of amplitude (one quantiration level) can occur

in less than 20 ms. In other words, as the sampling epoch shifts, as it is

likely to do from trial to trial since it is uncontrolled, many patterns may

change and a new and different set of library references may be generated.

Now the sampling interval and channel output time constants of

the VDPS have been chosen to give an adequate representation of speech

as determined from experiment. Presumably this is true regardless of

sampling epoch. The situation here is analogous to sampling the amplitude

of a time waveform, in which the one-dimensional amplitude samples of the

latter correspond to the 18-dimensional samples of our vocoder output. In

amplitude sampling we know that if the samples are taken frequently enough,

then a good replica of the original waveform results when the sample values

are processed in an appropriate low-pass filter. The result is not dependent

on the sampling epoch or a particular sequence of amplitude values. Any

sequence will serve as long as the rate of sample occurrence is not changed

and the samples are taken consecutively in time. Analogously, although

different pattern sequences may be obtained on different trials of the same

input data with the VDPS, one sequence is as good as another as far as the

effect on a listener is concerned.
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I In particular, the variations from trial to trial in the patterns obtained

do not indcate the linguistic tolerances of the patterns. That is, for example,

I if the first non-zero pattern obtained on the first trial differs from the first non-

zero pattern obtained on the second trial, this does not necessarily mean that

i these two could be exchanged, all other patterns in the two sequences remaining

the same, without some degradation. On the other hand, the sampling rate

I built into the machine is somewhat faster than that dictated solely by sampling

considerations, so that we should actually expect rather small trial-to-trial

I differences in corresponding patterns.

It would be very convenient if these trial-to-trial sampling variations

were acoustically tolerable in the sense that the absolute distance between any

two sets of patterns that can be generated by varying sampling epoch alone is

much less than the linguistic tolerance threshold R . If this is the case,5

Isampling variations may be regarded as small errors and can be neglected

in studying variations with text and speaker. Here the absolute distance is

J obtained by taking the sum of the absolute channel differences between each

pattern in one library and the nearest pattern in the other and summing over

T all patterns in the first library, as described above.

Let us denote by - the average absolute distance between sets of

patterns generated by sampling epoch variation alone. This quantity can be

measured by recording a fairly long sample of speech and playing it repeatedly

into the vocoder-analyzer, preserving the set of patterns generated on each

trial. The absolute distances between all pairs of pattern sets are then cal-

culated and the average of these is e . The speech sample used for this

experiment should be long enough so that the variety of acoustic patterns

possible of utterance by a typical speaker is well represented. We do not

know how long a sample this should be, but it would seem that about 20

seconds (1000 patterns) of text chosen for its representativeness should be
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adequate. The effect of sample length can be determined by processing the

patterns in two 10 second batches and comparing the 4" obtained for one batch

with that obtained for the other and for the complete. 20 second sample.

The number of times the recording should be rerun depends on how

many distinguidhable patterns can occur w.thin one 20 me sampling interval.

This is unknown too, but the number is probably not more than two or three.

If there are three distinguishable subintervals, the probability that at least

one sample will be taken from each in N trials is given by

P 3 = 1- (2N _) 31 ' N  (3.1)

According to this, 9 trials will give a probability of 92 9' that ead of the

three subintervals has been sampled at least once. For two distinguishable

subintervals the corresponding probability is

P? = I - 2 1N (3.2)
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3.3 Minimization of Synthesizer Errors

Once the analyzer sampling error ; has been measured or estimated5

we have a basis for evaluating the performance of the synthesizer. Let us

suppose that a speech sample has been read into the analyzer with the threshold

set at Pero and that the spectrum patterns occurring every 20 me have been

placed in storage. If the synthesizer is now used to manufacture artificial

speech from the sequence of spectrum patterns, and the synthesized speech

is fed back through the analyzer, ideally the spectrum patterns then obtained

should correspond identically with the original patterns in storage. Identical

correspondence will not occur, however, because of the sampling effect just

discussedand also because the synthesizer even when optimally adjusted can-

not reproduce the original waveform elactly.

The absolute distance between the stored set of patterns and the set

produced by the synthetic speech immediately suggests itself as a measure of

how well the synthesizer is adjusted. On the average this distance will be

larger than 7 and the synthesizer should be adjusted to minimize it.5

A technique for adjusting the synthesizer channel gains may be based

directly on minimizing this absolute distance. After the synthetic speech has

been passed through the analyzer, its spectrum patterns are placed in one-

to-one correspondence with the stored patterns of the speech before synthesis

in the usual way by associating each pattern in one set with the nearest pat-

tern of the other set, thus obtaining say N pairs of patterns. Each individual

channel is then examined by observing the distribution of the N differences

occurring for that channel in the N pairs of patterns just obtained. If sign

is preserved a histogram of the differences would ideally be centered near

zero. If the synthesizer gain for that channel is high or low the distribution

will be skewed to the right or left by an amount proportional to the gain error.

Of course, if the dhannel gains are badly misadjusted, considerable cutting

and trying will be required to arrive at the proper adjustment.
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4. RATE OF REFERENCE GENERATION

4. 1 Occupancy Theory Model

Suppose the VDPS in the analysis mode is used to generate library

references with a machine threshold TM = 5. We would expect that at the

beginning of speech, when the library is empty, the number of new references

generated per second would be relatively large and that as time goes on and

more references are accumulated in memory the number of new references

generated per second would decrease, finally leveling off and approaching

zero.

It is of considerable importance to know how this buildup occurs,

particularly how long an interval is required to accumulate say 90 percent

of the total number of references used by a speaker, and roughly what the

total number is. The situation is complicated by the likely possibility that

the duration of the instantaneous subset configuration used by a speaker

may be shorter than the library buildup time. That is, a speaker may in

effect shift from one reference library to another as time goes on, with a

"dwell time" in any one library which is too short to achieve full buildup

of that library. Thus, the study of the rate of reference generation is in-

timately related to study of the stability with time of a speaker's subset

configuration.

A useful viewpoint for this study is provided by the following model,

which although it involves considerable idealization of the actual case, does

suggest some interesting interpretations of results.

Suppose we consider the random distribution of N indistinguishable

objects among M cells or compartments. Each object is equally likely to

be placed in any one of the M cells, independently of the placement of all

other objects. There is no restriction on the number of objects in any par-

ticular cell. We are interested in how the number of cells containing at

least one object depends on the number of objects N and the number of cells M.
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We have in mind here, of course, an analogy with the VDPS analysis process,

with the N objects being the first N spectrum patterns derived at the rate of

50 per second by the VDPS from a speech segment, and the M cells being M

reference subsets each containing all patterns differing from the subset refer-

ence by not more than one level in at most TM coordinates. The assumptions

of independence and equal probability in the occupancy theory model are pretty

certainly not met in the speech analogy, so that the former is an idealization

of the actual case.

For the object-cell problem it is known* that for M and N large the

average number n of non-empty cells is well approximated by

n "- MO - •_/ (3.3)

i. e., the average number of empty cells decreases exponentially as the number

of trials or objects to be distributed increases. (The actual distribution of the

number of empty cells is approximately Poisson.)

4.2 Illustrative Examples

Figure 4. 1 shows some data taken from runs made with a machine

similar to the VDPS, with T M = 5. The library buildup characteristic is

roughly exponential, a reasonably good fit to the gross trend being obtained

with
0. It)

n= 166(1 -e 0 (3.4)

shown as the solid curve in the Figure. By comparing (3. 4) with (3 3) we note

that they would coincide if M = 166 and N = 16.6t. Therefore, we may say

that for the first 30 seconds or so the process behaves as if independent

spectrum samples taken at the rate of 16. 6 per second were being distributed

randomly among 166 reference subsets. It is interesting to note that while

the actual sampling rate of the machine was 50 samples per second, the

*See Feller, An Introduction to Probabili y and its Applications, Wiley, 1950.
See 4. 5.
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equivalent rate of independent sampling is only 16. 6 per second or one-third
the actual rate. Of course, the unrealistic assumptions behind the occupancy-

theory model would prevent us from concluding with confidence that statistical

dependence e~tends on the average only over three consecutive 20 ms speech

samples, although that is what the analogy suggests. It also suggests that the

library used by this speaker contains only about 166 reference spectra. If

this were actually the case, and if speech synthesized using these references

were of satisfactory quality, the implied transmission system could operate

at a data rate of. 50 log2 166 = 369 bits per second, or perhaps even as low as
16. 6 log 2 166 = 123 bits per second. The chain of inferences here is a long

one with several weak links, however, so that at present these numbers must

be regarded as highly speculative.

Actually when we look closely at the experimental data of Figure 3. 8

we see that a sequence of exponential segments might fit the data better than

the single segment, which may be evidence that the speaker periodically makes

slight changes in the library he is using. The run from which the experimental

points were taken consisted of a number of separate tests during each of which

four 2-3 second sentences were spoken, followed by a fifth phrase "End of

Test_.. The test intervals and individual sentence starting times are in-

dicated on the Figure. We note that at the ends of Tests I, II, and III there

are breaks in the trend of the data. Another break occurs at the beginning of

the fourth sentence of Test III. The data continues its upward trend during

Text IV and succeedng tests not shown here (some garbling occurred later).

Figure 4. 2 shows another buildup characteristic, taken with a smaller

machine threshold (TM= 3) and extending over a longer time interval. We note

that the characteristic is approximately equivalent to the buildup in the number

of subsets occupied if patterns independently selected at a rate of 23. 2 per

second were being randomly distributed among 3100 reference subsets.
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Comparing this latter case with the former, we note that in one the

patterns are being dstributed among a few relatively large subsets (TM = 5,

M = 166), whereas in the other the distribution is over a larger number of

smaller subsets (TM = 3, M = 3100). It follows from the rule used by the

analyzer to define subsets that subsets with T M = 5 and T M = 3 contain a

total of about 330, 000 and 7, 200 points respectively, each point corresponding

to a different pattern. Thus, the total number of points "spanned" by the array

of subsets is 166 x 330, 000 = 55, 000, 000 in one case and 3, 100 x 7, 200

= 22, 000, 000 in the other. Since these agree within an order of magnitude,

we may conjecture that the total volume of 18-dimensional space utilized is
418 112

roughly the same in the two cases. There are some 4 = 10 points alto-

gether in the space, so that the percentage utilization is on the order on one-

hundredth of one percent.

The equivalent rate of independent sampling in the second example

with TM = 3 turned out to be 23. 2 per second, in contrast to 16. 6 per second

when T = 5. If we assume crudely that the reduced rates observed with

T M = 3 and 5 may be attributed to a tendency for successive vectors to remain

in the same subset, we would expect the observed rates to depend inversely

on the subset diameters. The ratio of subset radii for TM = 3 and 5 is in the

order of (7, 200/330, 000)1/18 = 0.81, while the corresponding ratio of rates is

(16. 6/23. 2) = 0. 72, indicating agreement to within about 10 percent. (Of

course, the subsets in question here are defined in such a peculiar way that

the definition of their radii is somewhat arbitrary.)

It is clear that further study and model-making is required for

satisfactory interpretation of these buildup characteristi ca. They appear

to contain valuable clues concerning the sample space configuration and its

stability with time. The occupancy-theory model may be capable of modifi-

cation to include the effects of periodically increasing the number of cells

among which the trials are distributed, in which case its value as an inter-

pretive aid would probably be enhanced.
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In addition to the buildup of the number of machine references as

illustrated here, it would be desirable to study buildup of the nuniber of

absolutely disjoint subsets, i. e., the number of new references obtained by

clustering the machine references as discussed above in Section 5.
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5. A LIBRARY REDUCTION TECHNIQUE

5. 1 Spherical Cluitering

Here we shall discuss a specific technique which operates on a set

of vectors and produces subsets each containing vectors closer to each other

than to those in other subsets; i. e., it is a clustering technique.. With this

technique we may examine the structuring of sample space produced by any

particular input condition.

The starting point for this distribution study is the list of reference

patterns stored by the VDPS when a speech sample has been fed in at the

analyzer input, with the machine threshold set at a particular value TM.

Each raw speech pattern then differs by not more than one quantization level

in not more than TM channels from some one of the references. Note that

if spheres of radus TM are constructed about each reference as a center,

many points of the space will be common to two or more spheres; i. e., the

spheres are not absolutely disjoint. We may regard the references generated

in this way as indications of where the raw speech patterns are concentrated

in the space, but not necessarily as the optimum set of references for best

separation of exdange subsets in view of the nearest-absolute-distance

criterion usedby the machine in making classification decisions.

When the spherical clustering technique to be described is applied to

a set of stored references, the objective is to find out which references are

close enough to each other that if each cluster i3 replaced by a reduced number

(perhaps a single one) of suitable chosen new references, then the nearest-

absolute-distance decision rule operating with the new references will produce

raw speech pattern replacements which are within the linguistic tolerance.

The assumption behind this is that linguistic tolerance depends on absolute

distance, as it must if the VDPS is to work satisfactorily with a reduced

number of fixed references.
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The spherical clustering technique separates a set of vectors into

subsets each of which contains vectors close to each other in the sense that

the absolute distance between any pair of vectors in a given subset is less

than some prescribed distance S. Let us call the set of vectors within a

distance S of a given vector V the S-neighborhood of V and denote it S(V).

The procedire for finding the subsets required is quite simple and obvious.

First, the vector V1 having the largest S-neighborhood S(V 1 ) is found. The

vectors in S(V 1 ) although all close to V 1 , may not be close to each other, so

the next step is to find the vector V 2 E S(V ) which itself has the largest S-

neighborhood S(V 2 ) within S(VI). The vectors in S(V 2 ) are now all close to
both V and V but still may not all be close to each other. The process is

continued until the remaining vectors in S(V 1 ) are ehausted. The result is

a subset C of vectors V 1 , V? ,... eachd which is within an absolute distance

S of each of the others in C1 .

To find the next cluster C the entire process is repeated starting

with the original set of vectors with those belonging to C1 deleted. The

remaini~ig clusters are found in a similar way.

5. 2 IllistrativeExamples

As an illustration of the method, the 20 references shown in Figure

2. 3 were clustered. These were the 20 most frequently used references gen-

erated by a machine of the type we are considering with a threshold setting

of 5 when a speech sample of about 1 1/2 minutes duration was analyzed.

Figure 2. 4 shows the absolute distances between each pair of references,

and Figure 5. 1 is a histogram showing the distribution of these dstances.

A threshold distance S of 10 was arbitrarily chosen at first as the dstance

within which all vectors belonging to the same cluster must be spaced. Figure

5. 2 shows the distances after thresholding. Inspection reveals that Reference

9 has the largest S-neighborhood, and that References 4, 2, 5, 8, and 13

constitute the sequence of selections remaining to complete the definition
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of the first cluster C With these references eliminated, the procedure is

repeated to find C2 , and so on, the clusters obtained being &* *hown at the

bottom of the Figure. In the derivation of these, the rule is used that if

more than one reference has the same maximum S-neighborhood, the highest

ranking one is chosen. The last cluster turns out to be a single vector (21)

which has been labeled C; because of its proximity to C 3, and has been in-

cluded with C3 in the calculations to follow.

In order to see how good these clusters are, we may choose a single

representative vector for each and inspect the intra- and intercluster dis-

tances. Figure 5. 3 shows the vectors arranged by clusters and the repre-

sentative new references chosen for each. The rule used for the latter was

to average each channel and round off to the nearest integer. In Figure 5.4a

the distances from each of the new references to each of the old references

are tabulated. We note that a machine using the nearest-absolute-distance

rule with the new references as the stored library would classify all of the

old references correctly (in the case of Reference 9 there is a tie between

R1 and R2 which would be resolved in favor of cluster 1 since C1 has a

larger population than C2 ). We see from Figure 5. 4b that the average

cluster radius (4. 5) is significantly smaller than the average distance be-

tween new references and adjacent clusters (13. 0). Figure 5. 4c shows the

separations between all pairs of new references, averaging 12. 6.

Of course these results are illustrative only and are strongly

affected by the machine threshold TM used to obtain the original 20 refer-

ences andthe threshold S used to define the clusters. In particular when

these thresholds are large, as in the example, (TM = 5, S = 10), many raw

speech patterns which were originally associated with a given reference may

turn out to be replaced by a different new reference than the new reference

which replaces the given reference. Figure 5. 5 makes this clear. Pattern X
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was originally associated by the analyzer with reference pattern 2, from

which it differs by not more than I per channel in not more than 5 channels.

After clustering the reference patterns, pattern 2 becomes part of the first

cluster represented by the new reference R , and indeed it is closer to R I

than to any other of the new references. Pattern X, on the other hand, is

closer to R2 than to R I* In the operation of the machine in the classification

mode, therefore, the two patterns 2 and X which are within a distance 2 of

each other are exchanged for two patterns R1 and R2 which are separatedby

a distance of 12. Of course, both 2 and X are replaced by new patterns only

7 units distant in each case which is comparable with the radius of the subsets

generated by the clustering scheme. Thus, if it is linguistically tolerable to

represent subsets of this radius by single references near their centers, the

replacements mentioned may also be linguistically tolerable. The fact that

this order of magnitude is probably not tolerable means that the original data

should have been taken with a smaller machine threshold T M and a smaller

clustering threshold S.

In order to observe the effect of changing the clustering threshold S,

the 20 vectors of Figure 2. 3 were clustered again with a threshold of 8 rather

than 10. The clusters produced at the two threshold values are compared in

the following table:

S=8 S=10

C1 2-5-8-9-13 2-4-5-8-9-13

C2 6-11-12-18 3-6-11-12-18

C3 10-15-21 10-15-20

C4 16-17 7-16-17

C5  4-14-19 14-19

C6 20 21

C 7  7

C 8  3
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Referring to Figure 5. 3, we note for example that the changes brought

about in C1 and C5 , viz. transfer of reference 4 from C to C 5 seems reasonable

because reference 4 has a definite formant structure which is lacking in the re-

maining vectors of C 1 , and which better fits the structure pattern of references

14 and 19. Figures 5. 6 and 5. 7 show the choice of new references for S=8, the

average distances between new references and clusters, and the distance be-

tween references. It would appear that S=8 is somewhat more satisfactory as

a clustering threshold that S=10 in this case.

While these examples are illustrative only, if the technique had been

applied to a realistic and complete set of vectors, whether raw speech patterns

or machine-produced references, the next step would be to use the VDPS to

resynthesize the original speech in terms of the reduced number of new refer-

ences. The nature of the procedure is such that most of the original speech

vectors will be close to one or another of the new vectors, so that the resulting

resynthesized speech is nearly optimum for the reduced number of references.

If it is not of adequate quality, the spherical clustering must be repeated with

a smaller cluster diameter.
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Figure 5. 6 Choice of New References (S 38)
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R1 R2 R3 R4 R5 R6 R7 R8

C 1  4.4 12.2 13.6 10.8 10.2 8.8 9.6 11.4

C2  11.8 3.8 17.8 16.8 14.8 7.8 14.5 14,8

C 3  13.0 16.0 3.0 14.3 11.3 13.7 140 9.3

C 4  9.3 15.7 14.0 4.7 11.0 13.3 11.3 10.3

C 5  11.0 15.0 12.0 14.0 3.0 13.0 9.0 11.0

C6  8.0 7.0 14.0 14.0 11.0 0.0 12.0 13.0

C 7  8.0 15.0 16.0 12.0 7.0 12.0 0.0 15.0

C8  13.0 14.0 9.0 9.0 10.0 13.0 15.0 0.0

Figure 5. 7a Average Distances Between New References
and Clusters (S - 8)

R1 R R3 R4 R 5  R6 R7 R8

R 0 13 14 10 9 8 8 131

*. 2  0 17 17 14 7 15 14

*. 3  0 12 11 14 16 9

B 4  0 11 14 12 9

R 5  0 11 7 10

R 6  0 12 13

R 7  0 15

R 8  0
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5.3 Machine Cimputation

The spherical clustering technique described above was programmed

for the RECOMP II Computer and tried on sample data from the VDPS.

Owing to computer memory limitations, the program was designed

to handle a maximum of 245 reference patterns. Flow Chart 5. I shows how

the computation was programmed.

Data supplied by C. P. Smith in serial format were processed to

eliminate repetitions, and the 245 most frequently occurring patterns were

selected for clustering. Distances between all pairs of patterns were calcu-

lated and compared with a threshold of 10, selected by inspection of the &.ta.

The serial data were taken with 2-bit quantization and a pattern deviation of

3. The original text was as follows: "THIS IS R. J. MACBAIN SELECTION

SIX. HERE IS THE SIXTH SELECTION. IT IS A COLLEGE LECTURE ON

AN ASPECT OF LANGUAGE. WE TEND TO THfNK OF A LANGUAGE AS

AN ACCURATE STABLE THING WHICH... 1

The clustering computation was corried to the point where 188 of

the patterns were grouped into 36 clusters containing from 3 to 12 patterns

each. Three of the clusters formed are shown in Figures 5.8a, b, c to

illustrate the nature of the results. Well over 100 hours of RECOMP II

time was consumed by even this modest program, indicating that a larger

and faster computer would be required for a full scale run.

In a continuation of work with these data, another threshold might

be tried on all or a part of the data to see if the clustering could be improved

(although the present results seem to be rather good), after which a repre-

sentative vector from each cluster would be used to make up a reduced-size

library for resynthesis of the original speech, as discussed above.
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6. LIBRARY VARIABILITY

6. 1 Analysis of Variance

The index of library similarity introduced in 2. 3 makes it possible

to study quantitatively the significance of variations in the sample space con-

figuration produced by speaker and text differences. We need to do this in

order to assess the feasibility of using a fixed reference system, as discussed

above in 2. 2. We need to know how much variability there is in the refer-

ence libraries produced under different input conditions, and whether the

variability can reasonably be attributed to changes in the input condition or

whether it is normally what would be expected in view of random sampling

from fixed distributions.

In taking data for analysis using this measure of library similarity,

one reference library is chosen as a standard against which all others ob-

tained on different trials are compared. A single number representing the

average distance between the library obtained and the standard results from

each trial, and it is the variability of this quantity that is of interest. It is

necessary to refer each library to a standard in order to evaluate the

measure of similarity, which involves differences between vectors in one

library and those in another. The choice of standard is arbitrary but should

be governed by the peculiarities of the measure of similarity used As noted

above in 2. 3, the measure used increasingly departs from an ideal measure

of closeness as the average displacement between libraries increases relative

to the average separation of vectors within the libraries. This implies that

the standard should not be far away from the libraries to be studied. Since

we want to exhibit the variations as clearly as possible, a good choice would

seem to be one of the observed libraries itself. If the moan of all libraries

observed were chosen, the variation would not show up as well becaise the
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absolute distances involved in the measure of similarity would tend to be

roughly the same even though the libraries were displaced considerably;

e. g., two libraries on "opposite sides" of the standard might be exactly

the same absolute distance away from the standkrd and yet be twice this

distance apart from each other, so that the variation between them would

be totally obscured.

We shall adopt as a general procedure then the use of the library

obtained on a particular run as the standard against which others are com-

pared for the purpose of analyzing their variability. The particular run

chosen will usually be the first of the series to bl studied, although special

circumstances may dictate a different choice.

A vast literature exists on techniques for analyzing the variability

of such experimental results, and for designing experiments to bring out

certain types of variations more clearly. It would be neither possible nor

appropriate to attempt here a summary of this material, usually found in

stanuard statistical texts under the headings of Analysis of Variance and

Design of Experiments. * Accordingly, we shall limit the discussion in

this section to some general indications of the types of assumptions in-

volved and results obtainable when these methods are used, and in the

following sections suggest some more specific procedures for the particular

problems of the present application.

The elementary techniques for analyzing variance, which we may

expect to find the most useful for our application, are based on comparing

the variations among different families of trial observations with the vari-

ations within families. If the variation among families is significantly

larger than that within families, we may conclude that there is a "family

effect" in the data; e. g., in our application that changing the parameter

set does indeed produce a significant change in system performance.

*See for example Scheffe, The Analysis of Variance, Wiley 1959, and
Kempthorne, The Design and Analysis of Experiments, Wiley 1952.



The techniques for making significance tests of this kind depend on the

fact that if the trial observations are independent samples from a common

underlying Gaussian distribution, then the variation between families is sta-

tistically independent of the variation within families. Under this condition

the sums of the squared variations of these two types have independent chi-

squared distributions, and their ratio has a Fisher-Snedecor F distribution,

which is tabulated.

Thus it is easy to find the probability that any observed value of the

ratio would be obtained purely by chance on the hypothesis that all data were

drawn from a common underlying Gaussian distribution, so that all variations

were due solely to sampling fluctuations. The level of significance of a value

is the probability that a purely random sample would deviate even further

from the mean of the F-distribution than does the value in question. How-

ever, if it turns out for example that the signficance level of a particular

ratio value were only 1 7o on the assumption that sampling error was the

only operative factor, we might have good reason to reject this hypothesis.

These elementary techniques depend for their validity on the

assumption that in the absence of family effects the data would be homo-

geneous in the sense that the observations could be then regarded as samples

from the same Gaussian population. This is often not a good assumption,

however, and the whole basis of the analysis is threatened unless ways can

be found to circumvent this difficulty. Fortunately under certain conditions

the F test is rather insensitive to this assumption. Moreover, many tech-.

niques of experimental design are available which make it possible to use

the same type of significance test even when the populations from which the

samples are drawn are non-Gaussian and unknown.

To illustrate the underlying idea common to many of these "design

of experiment" teciniques, suppose we wish to determine whether there are
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significant differences in the libraries used by a given speaker when he reads

three different types of text. We may envision a number of trials, in each of

which f irst a sample of one type of text is read, then a sample of the next type

and finally a sample of the last type. This is repeated several times. Now

in analyzing the results to determine whether there is significant variation

between types of text, we first make the hypothesis that there is none (the

null hypothesis), and then reason that if indeed there were none, the data

on each trial should be homogeneous. However, if the types of test are al-

ways read by the speaker in the same order on each trial, it is clear, for

example, that fatigue or training effects might influence the third type, which

is always the last one read, more than the others. That is, there might well

have been systematic variations in the data due to fatigue even if the choice

of text type actually made no difference at all. The assumption of homo-

geniety and the test of significance would therefore be invalid.

The remedy in this simple case is intuitively obvious. The experiment

should be redesigned so that the order in which the types of teit are used on

each trial is randomized. It can be shown that when this is done, the ordinary

techniques of analyzing variance become valid again, at least with good approx-

imation. The principle of randomization admits of considerable elaboration,

and together with appropriately formulated test and estimation procedures,

makes available a variety of techniques for circumventing the difficulties

causedby violation of the usual assumptions that the observation errors are

statistically incbpendent with equal variance.

As mentioned above, the F-test provides a means of determining

whether or not there is significant variation from family to family. The

simplest model of the family effect postulates that the family distributions

differ only in their mean values. It is intuitively evident from random

sampling considerations that increasing the number of experimental
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observations should bring out differences between family means more clearly,

and hence should improve the test in the sense that when there exist actual

differences in the means, the null hypothesis (that there are no differences)

should be rejected more strongly. This is indeed the case and furnishes a

basis for deciding in advance how many observations should be taken on each

family, i. e., for designing the experiment. For example, we may have no

reason to expect one family mean to be any different from the others than

another, and may wish to design the experiment so that if the largest difference

between family means is A, the F-test will reject the null hypothesis with 90

percent probability. This probability is called the "power" of the F-test,

and tables exist which enable one to determine what sample size should be

used to achieve a given power with prescribed A. Figure 6. 1 shows some

calculations of the sample size required for various numbers of families.

Here the number of samples per family is the same and A is expressed in

units of a, the standard deviation of each sample distribution.

Of course if the F-test rejects the null hypothesis, we will immedi-

ately be interested in estimating the magnitude of the family effect thus

implied to exist. Techniques are available for this also, permitting us to

establish intervals within which certain linear combinations of the family

means are included with prescribed probability.

This brief sketch has attempted to convey somn idea of the principal

Jtype of techniques available in the general area of analysis of variance. Con-

siderable complexity is encountered when the data are classified into several

groups of families simultaneously, bah in ts design of the experiment and the

analysis of results. The underlying ideas are all basically similar, however,

and represent extensions and elaborations of the elementary concepts discussed

above.
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Sample Size Required
No. of

Families Alua U I A/a Z A/as 3

2 22-23 6-7 3-4

3 26 7-8 4-5

4 28-29 8 4-5

5 31-32 8-9 4-5

Figure 6. 1 Sample Size vs. Number of Families
F-test - one-way Layout

Power = 90 0/0
Level of Significance = 0. 05

[Data calculated from Pearson and Hartley
charts. See Scheffi, pp. 62-65J
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6.2 Variations With Duration of Utterance

Turning now to the specific needs of our present program, let us

consider first the variations in a speaker's library that may be attributed

to fatigue and training effects.

Suppose each of a number J of speakers SI , S2 S.. 3 is asked to

read one sample of text in each of 1+1 consecutive time intervals T 0 , T I, ... ,

TI. Let the first sample read by each speaker serve to furnish the standard

library against which his I remaining sample libraries are compared by use

of the index of similarity discussed above, and lot yij be the index obtained

when the J-th speaker reads in the i-th time interval. Our model then is

yij =i+eij (i= 1,..., I; j=l,..., J) (6.1)

where is the population mean of the samples in the i-th interval and the

(e i) are independent normal random variables with sero means and equal

variances a . We wish to test the null hypothesis

H0:1 ( 6.2)

i. e., the hypothesis that there is no significant effect due to time of speaking.

The main consideration affecting the choice of text for each sample

is that variability due to text differences may obscure the variation with time

interval that we are interested in. One possibility is to use the same piece

of text for every interval. This would involve word-for-word repetition by

a given speaker several times, however, which is an unnatural mode of

extended utterance. A bettor scheme would be to use several different

passages of text X1, X 2 ,..., X, all of the same type and randomize the

assignment of the different passages of text to speakers and time intervals

so that systematic variation among the X's will not upset our test.
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We note from Figure 6. 1 that 8 samples each from 4 families will

permit an F-test at a level of significance of 0. 05 that is 90 percent sure to

reject H0 if any pair of the population means { i) differ by more than twice

the standard deviation a. The following scheme for assigning text material

is thus a possibility:

Speakers

SI  S2 S3 S4 S5 S6  S7  S8

T XI  X2  X 3  X4  X I  X2  X3  X4

T2  X X3  X XI  X X3  X XI

Time 2 2 3 4 1 2 3 4 1

Intervals T3  X3  X 4  X1 X2  X3  X4  XI  X2

T X X I  X2  X 3  X4  XI  X2  X

Assignment of Text Material

With this arrangement each type of text appears once for each speaker and

twice in each time interval. A similar layout with 3 time intervals, 3 types

of text and 6 speakers will permit a test of nearly the same power, according

to Figure 6.1.

The text sample X0 used for the standardization run may be the samie

for each speaker, but should differ from the other X's to avoid unnatural

repetitions. The text samples themselves should be short enough to preclude

smearing of the linguistic subsets within a single time interval, and yet long

enough to include a representative selection of the most commonly occurring

library references (see Sec. 2 ).

In order to test thenull hypothesis (6. 2 ), we observe first that for

the model of (6. 1) the following sum-of-squares decomposition may be made:
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88T assW S B  (6.3)

T W B
iT Ytj-y d.f. =(T-1 16.4)

i j

SS W (Yij "Yi.) d.f. aI(J - 1) (6.5)

ij

SSB J Y y..), d.f. a I- I (6.6)

Here a dot subscript means that the arithmetic average over the subscript

normally in that position has been taken. If the random variables yii are

independent and normal with identical variances, the sums of squares SSTV

SS W and SSB are independent random variables having chi-sq,.,ared distri-

butions with the degrees of freedom (d. f.) indicated. The statistic

a IV- I SB(6.7)I - I ss w

then has an F-distribution with v= I - 1, V2 = IJ 1 degrees of freedom. The

test of the null hypothesis (6. 2) consists of calculating the value of F from

(6. 7 ) and the observed data, choosing a level of significance c, looking up

in a table of the F distribution the value F for which the cumulative Fa

probability is I-a and comparing the calculated F with F . If F > Fa , we

reject H0 at the level of significance a and conclude that there is a significant

effect due to time of speaking. If F < F a , we draw the opposite conclusion.

A word of reassurance concerning the assumptions upon which this

test is based may be in order at this point. It is known that when the number

of samples per family is equal for all families (which in our applications may
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be made a requirement of the experimental design), then the effects of non-

normality and inequality of variance on the F-test are very small for rather

severe violations of these two assumptions. Non-independence is more

serious, however, so that care must be taken in designing the experiment

to eliminate undesired statistical dependence by randomization of the data

and control of the conditions under which observations are taken.

Now let us suppose that in the above example we have rejected the

null hypothesis, so that there is reason to believe that there are variations

among the means V We should now like to know something about the

magnitudes of these implied variations. Here the following method* is

particularly convenient. Let 41 denote any linear function of the i with

constant coefficients c ,

+ c A c ( i c=) * (6.8)

then
A ~

-= ciyi. (6.9 )

and

SW c V6.0= ( -' ci (6. i c*

are unbiased estimates of the mean and variances of u. It can be shown that

any 4 of the form (6. 8) satisfies the inequality

A A SA
40 *0 <~. 40 a 5 (6.11)

with probability I - a, where

S2 = (I - l) F a . (6.2)

*See Scheffe, Sec. 3. 4.

.64-



Here a and F are the same as used above in the F-test.

a

The flexible form (6. 8) and the inequality (6. 1) permit estimates of

many quantities of interest, e. g., in the above example with appropriate choices

of the ( ci) we may estimate
I

4 " = (P +0 + 0 3 )

04 " 01 (6.13)

(" 04 " 03) " (02 " 01)

and so on, and in each case if a : .05 we can be 95 percent sure that these

quantities fall within the corresponding intervals calculated from (6. 11). In

this way we can get an idea of how much the average library displacement

increases with time, whether the increase is linear with time, etc., all of

which add to our knowledge of the time variability of the sample space

configuration.

We have illustrated in this section only one elementary method of

studying time variability. Others exist, particularly naethods that involve

taking data under conditions that allow several factors in addition to time

variability to be operative simultaneously (such as speaker and text varia -

bility) and analysis of results to isolate the effect of each factor singly.

The added complexity of these methods may be Justified if the more elementazy

ones prove unsatisfactory.
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6.3 Variations Among Speakers

The one-way classification model discussed above may be used to

study variations among speakers also. Here, however, the families would

be speakers S1 .... SI and the samples from each would be obtained by having

each read J test passages X1 ..... X., where the X's now should be indepen-

dent samples, preferably of a single type of text material. The times T 1 ...

T I at which the speakers read should be mixed up so that systematic variations

with time will not obscure the speaker-to-speaker effect sought. Again a

4 x 8 layout will give a test which will reject with 90 percent certainty the

null hypothesis that there are no speaker differences when actually there are

two speakers who differ by A = 2v or more. Accordingly, the following

arrangement may be used:

Text Samples

X1 X2 X3 X4 X5 X6 X7 X8

S 1  T 1  T T 3  T 4  T 1  T2 T 3  T 4

S2 T2 T 3  T 4  T 1  T T 3  T 4  TI

Speakers
S3 T 3  T 4  TI T2 T 3  T 4  TI T 2

S4 T4 T1 T2 T3 T4 T1 T2 T3

Test Arrangement

The standkrd "calibration" library needed to calculate the interlibrary

distances here would most appropriately be obtained for each X by a speaker

S different from the others. Each column in the above arrangement would

then have its own standard against which its 4 sample libraries would be

compared

The F-test of the null hypothesis and the estimation of the magnitudes

of the differences between speaker means in the event H0 is rejected proceed

exactly as before.
-66 -



6.4 Variations Due to Type of Text

In order co determine whether the type of text significantly influences

the library configuration, we may employ a similar one-way classification

model, taking as families the text types X 1 ... , XI . A number of speakers

Sit ... , S would read each type of text to obtain the necessary independent

sequences of trials. Probably only two types of text need be tried: dis-

connected words and connected discourse. To obtain satisfactory power,

accordng to Figure 6. 1, about 6 speakers should be used making the following

arrangement appropriate:

Speakers

S1  S2  S3  S4  S 5  S6

Text X1  T TI TT T2  T 1  T2
Type

X 2  T2 T1 T2 T1 T2 T1

Test Arrangement

Here the times of speaking T1 and T 2 are distributed in such a way that the

order in which the text material is read will not influence the variation due

to type of material.

A suitable calibration scheme here would be to have each speaker

read a standard passage X0 to obtain a library against which his further

utterances could be compared.

The test and estimation procedures already described apply here

as well.
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7. TECHNIQUES FOR FURTHER IMPROVEMENT OF COMPRESSION
RATIO

7. 1 Coding*

If a fixed set of library references can be found which gives an adequate

representation of speech,over a suitable range of speakers and text, we will be

faced next with the problem of encoding the references for transmission. It can

be shown that the process of encoding a source such as this for transmission

through a prescribed noisy channel may, without loss of generality, be consid-

ered as a sequence of two operations: source encoding, or the transformation

of the source output into a sequence of binary digits, and channel encoding, or

the transformation of the binary sequences generated by the source encoder into

suitable form for transmission through the noisy channel. The two encoders

may be designed independently, the source encoder design depending only on

the source characteristics and that of the channel encoder depending only on

the channel characteristics. Accordingly, we shall consider here only the

source encoding problem.

The choice of a "noiseless" coding scheme for unambiguous represen-

tation of a sequence of source references of "messages" in terms of binary

digits depends on the relative probabilities of occurrence of the source refer

ences, their statistical independence, or lack of it, and whether the source

rate is fixed or controllable.

If the source rate is controllable and the references occur indepen-

dently, a lower bound exists for the average number of binary symbols per

reference that can be used without the occurrence of ambiguity in decoding.

The lower bound is the entropy of the message ensemble H(R), which in

bhis case is not greater than log 2 N bits, where N is the number of different

references in the library. The lower bound may be approached to within

one bit by making the length of the code word associated with each message

*See, for example, Fano, Transmission of Information, Wiley 1961.
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as nearly equal as possible to (but not less than) log2 of the reciprocal pro-

bability of its occurrence. The lower bound may be approached even more

closely by assigning code words to sequences of references or messages,

rather than to individual references. Procedures for finding such optimum

sets of code words are well known, and need not be discussed here.

The above scheme gets into trouble if the source generates messages

at a fixed rate and the source encoder is required to transmit its output symbols

at a constant rate, which is the situation we must deal with here. This occurs

because the code words representing the messages have different lengths. It

can be shown that any finite storage device designed to take up the difference

between the rate at which messages are fed into the encoder and the rate at

which they are transmitted from it will eventually overflow with probability 1.

This difficulty can be overcome by using fixed-length code words for certain

long sequences of messages, and allowing other long sequences with vanishingly

small probabilities of occurrence to be confused in decoding. It can be shown

that by encoding sufficiently long sequences in this way the lower bound men-

tioned above may be approached as closely as desired, and at the same time

the probability of ambiguous decoding can be made as small as desired.

A more serious problem in our present application is the undoubted

fact that successive references in a sequence representing speech are not

independent. It can be shown that if the source is ergodic the theoretical

situation here is formally the same as described above, with the exception

that the entropy of the message ensemble, H(R), which constituted the lower

bound on average code word length above, is now replaced by a conditional

entropy H(A I A ):

n

H(A I A ) a lim I H(AkIAkl-(:,.)

n4oo k=l



Here H(AkI A I) is the conditional entropy. of the k-th reference in a

sequence given the k-I preceding references, and is calculated from the

corresponding conditional probabilities of particular references occurring

in the k-th position for combinations of occurrences in the preceding k-I

positions. It is known that H(Ak I A k) decreases or remains constant with

increasing k, reflecting the fact that as more past history becomes known,

the uncertainty about the next event decreases, on the average. The partial

sums on the right in (3. 24) also decrease or remain constant with increasing

n, all of which is helpful in estimating the lower bound H(AI A00).

The number H(A I A ° ) is a characteristic of the source and is never

larger than H(R). When there is statistical dependence, therefore, and ad-

vantage can be taken of it, there exists the possibility of using shorter code

words on the average for message representation, and consequently for

achieving higher compression ratios. How much this advantage is and

whether it is worth the trouble it would take to estimate it remains to be

seen.

Turning now to what can be done practically, we see that the first

and easiest thing to do is to get an estimate of H(R), which may be regarded

as a first approximation to H(A I A 00 ). For this, the relative frequencies of

occurrence of the various library references are needed. These may readily

be tallied by the VDPS for a number of runs, working in several speakers and

types of text to get a good sized representative sample of several minutes

duration. To illustrate the simple calculations involved, we may take the

5 references found from the spherical clustering example of Section 5. 2

and artificially consider them as a complete library. For their frequencies

of occurrence we may add together the numbers of times each vector in each

of the 5 clusters occurred and divide by the total. The table below shows the

results.
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No. of CodeP. -PjlogP. n. n.P.
Reference Occurrences I Word _ _1

* 1  1199 .402 .528 0 1 .402

* 2842 .282 515 10 2 .564

* 3  405 .136 .392 110 3 .408

* 4  348 . 116 .360 1111 4 .464

R5  190 .064 .254 1110 4 .256

TOTALS 2984 1.000 2.049 = H(R) 2. 094 = n

log 2 5 = 2.322

We note that the entropy of the reference ensemble H(R) is 2. 049 bits

per reference. If the references occurred with equal probability, the cor-

responding entropy would be 1og 2 5 = 2. 322, indicating that at least 0. 273

bits per reference can be saved by optimum encoding. (Actually, ordinary

encoding of the 5 references, which ignored their different rates of occurrence,

would require code words of length 3 since non-integer lengths cannot be used.)

Also shown is a set of optimum code words for reference sequences of length

1, for which the average code-word length n is 2. 094 binary symbols. This

compares favorably with the value of H(R) = 2. 049. The latter could be

approached even more closely by encoding longer sequences of references.

We observe that the most frequently occurring references have the shortest

code words, and that any sequence of code words can be unambiguously de-

coded to retrieve the encoded reference sequence. In particular, it is

apparent that the average data rate can be reduced by about 30 percent in

this example by using optimum coding rather than ordinary 3-bit-per-

reference coding.

In order to go beyond H(R) in approximating H(A IA 0) we would need

further statistical information about the reference sequences, in particular

information on conditional probabilities of the type

P(akl akl... ak-n ) '
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in which ak is the reference in an arbitrary position of a sequence and a. .. .ak-n

are the n preceding references. These a's range over the entire library of references.

Clearly, it would be a formidable and foolhardy undertaking to attempt the evaluation

of these conditional probabilities to a high order. About all we could envision would

be use of a high speed computer to tally the most frequently occurring sequences of

length 2 or 3. In view of the monotonic property of the partial sums in (7. 1), how-

ever, even one or two low-order conditional entropy terms would be of help in the

estimation.

Actually, from a practical point of view we might argue that the lower bound

H(A I A00) is chiefly of academic interest anyway. If the most we can hope to do is

to get the frequencies of occurrence of sequences of length 2 or 3, why not encode

these optimally and determine the average data rate experimentally? There may

even be much simpler techniques such as run-length coding that will provide signi-

ficant reductions of data rate. Everything depends on the data, andoften a quali-

tative inspection will suggest ad hoc measures that are more effective and simpler

to apply than more general theoretical approaches.

7.2 Segmentation

In the preceding sections of this report the efficient representation of human

speech sounds has taken the form of finding a small library of instantaneous spectra

one of which always matches the spectrum patterns of the talker with a satisfactory

degree of fidelity. The purpose of investigations described in the preceding was to

reduce the number of elements of the library and thus reduce the number of bits

necessary for encodng and transmitting the sequence of spectra used in synthesizing

speech.

Another and independent direction that speech bandwidth compression studies

can take is directed at reducing the number of times a new spectrum pattern must

be transmitted. Two dfferent approaches can be taken to achieve this objective.

One hinges on the statistical dependence of consecutive spectrum patterns, a
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characteristic that can be exploited by coding techniques as discussed briefly 'n

Section 7. 1. A typical example f a coding technique is the application of "run-

length" coding where the repetitive occurrence of identical spectra can be encoded

by the transmission of the spectrum at the time of its first occurrence plus a

numerical indication of the number of repetitions.

Changing the method of spectrum sampling by changing the sampling

epoch is another approach to reducing the bit rate. This is particularly appealing

if the receiver's primary interest is in the preservation of the infoimation

content of speech as, for instance, would be the case in voice controlled teletype

applications. If speech could be segmented into the sequence of sounds that we

wish to distinguish from one another, the number of spectrum samples could be

reduced by preserving (say only) one sample per speech segment. Encodng and

transmission would proceed in a manner similar to that described above under

run-length coding.

The segmentation scheme studied briefly here is based on the fact that

when significant speech events start, their energy distribution differs from that

of the preceding sound. Change in energy distribution can be detected by measuring

the sum of magnitudes of the vocoder channel time derivatives at every instant.

The segmentation waveform, s(t), is given below where a.i s the
1

18 dat
sd t) t

M) I I dti=

i-th channel amplitude in an 18-channel vocoder. This is illustrated in Figure 7. 1

where each of the 18 channel amplitudes is represented by a number between 0 (not

printed) and 7, and where s(t) is printed below the digitized vocoder representation.

The waveform s(t) has the characteristic that it is small when the speech sound is

quasi stationary--as during most extended vowel sounds--and is large at the boundaries

of speech sounds. It will be noted that the above hypothesis concerning the nature of

s(t) is justified. Vertical lines above the sonagram and below the sequence of s(t)
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samples denote the points in time where s(t) > 9 and where s(t) has local peaks

(plus to minus sign change in dt)). Dotted lines indicate peaks were s(t) > 7.
dt

The correlation between the location of speech segments marked off by

the vertical lines and the speech sounds we wish to distinguish from one another

is excellent. The resulting segmentation scheme never fails to partition the text

where a partition is required, and only segments the text unnecessarily in a few

instances.

If the instantaneous spectrum nearest the center of each speech segment

is selected as typifying the sound represented by the segment, the selected spectra

would form a good basis for the choice of sounds whose phonetic transcription is

unambiguous. That is to say, the selected spectra represent sounds that are

typical of the sound represented by the speech segment in which it is contained.

Aside from its obvious application to speech transcription (conversion to a phonetically

transcribed representation) these selected spectra (indicated with arrows in Figure

7. 1 may be useful in bandwidth compression.

Suppose, for instance, that we generate new synthetic speech exclusively

from the above described selected spectra. Between speech segment boundaries--

as defined operationally by the simultaneous satisfaction of the inequality s(t) > 9

and the occurrence of a local peak of s(t)--we reproduce repetitively the selected

spectrum. The resulting new synthetic speech is shown in the digitized sonagram

at the bottom of Figure 7. 1.

The information content of this synthetic speech is much less, of course,

than that of the original speech, and its transmission with reduced bandwidth lends

itself readily to the application of run length coding. The 8370 bits of data necessary

to transmit the sentence of Figure 7. 1 can be compressed into only 1915 bits with

the new synthetic speech. A factor of 4. 36 bandwidth compression is thus achieved.
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The resulting compressed speech was run through the AFCRL synthesizer

and recorded on magnetic tape along with the original speech and the version appearing

at the vocoder output, in order to facilitate quality comparisons (voicing and pitch

information were artificially added). The compressed version was perfectly intel-

ligible, and its quality was judged good.

-76--



8. RECOMMENDED PROGRAM OF EXPERIMENTATION

8.1 Determination of Equipment Errors

8.1.1 Data Needed:

a) Raw speech pattern sequences (TM = 0) obtained by repeatedly

playing the same 20 second recording of speech into the analyzer five times,

with the memory cleared after each trial.

b) The speech pattern sequence (TM = 0) obtained by playing a re-

cording of the synthesizer output into the analyzer. The synthesizer input

should be one of the 20 second library sequences obtained at the analyzer

output in a).

8.1.2 Analysis:

a) Compute distances between every pair of library sequences

obtained in 8. 1. la and average to find sampling error.

b) Order the sequence obtained in 8. 1. lb with respect to the library

sequence usedas the synthesizer input, using the technique of Section 2. 3.

Make 18 histograms, one for each channel, of the channel differences

(with sign preserved) occurring in the pairs obtained by the above ordering.

Examine these for ikewness to judge quality of synthesizer adjustment.

8.2 Average Diameter and Spacing of Subsets

8.2.1 Data Needed:

Reference pattern sequence obtained with TM = 2 for a 60 seond

segment of recorded speech.

8.2.2 Analysis

Apply the spherical clustering analysis of Section 5. 1 to the first 20

second segment, the first 40 second segment and the entire 60 second segment

of data obtained in 8.2. 1. Use a clustering threshold of 4.
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Read the new references obtained into the VDPS memory, and rerun

the recording used in 8. 2. 1 with the machine in the classification mode. Record

the synthesized speech and judge its quality. Ifit is satisfactory, repeat the

clustering analysis with a higher threshold and synthesize again. When highest

tolerable threshold is found, compute reference distance matrix to study subset

configuration.

8.3 Rate of Subset Generation

8.3. 1 Data Needed:

Number of references in library vs time for a 60 second segment of

connected text, with machine thresholds of 2, 3, 4, and 5. Repeat for a second

speaker.

8.3.2 Analysis:

Plot data as in Figure 4. 1 and interpret as discussed in Section 4.

8.4 Variations With Duration of Utterance

8.4. 1 Data Needed:

Reference libraries taken with TM = 4 and 8 speakers, each reading 5

consecutive 20 sec. passages of text as discussed in Section 6. 2.

8.4.2 Analysis:

Analysis of variance as discussed in Section 6. 2.

8.5 Variations Among Speakers

8.5. 1 Data Needed:

Reference libraries taken with TM = 4 and 5 speakers, each reading 8

non-consecutive passages of text of 20 sec. duration, as discussed in Section 6. 3.

8.5.2 Analysis:

Analysis of variance as discussed in Section 6. 3.
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8.6 Variations Due To Type of Text

8.6.1 Data Needed:

Reference libraries taken with T = 4 and 6 speakers each reading 3

passages of text of 20 second duration. Two of the text passages should be of

different types.

8.6.2 Analysis:

Analysis of variance as discussed in Section 6. 4.

8. 7 Statistical Properties of Reference Sequences

8.7. 1 Data Needed:

Any of the above data can be used if frequencies of occurrence are also

tallied by the VDPS.

8.7.2 Analysis:

Determine average frequencies of occurrence and entropy of the

reference ensemble. Use computer to tally digram and trigram frequencies

if this appears to be justified. See discussion in Section 7. 1.

8.8 Speech Segmentation

Further experimentation of the type described in Section 7. 2 on longer

utterances from a variety of speakers. In each case it is desirable to record

the syntheased speech for comparative quality judgments.
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